Robust Vehicle Classification Based on Deep Features Learning

نویسندگان

چکیده

This paper aims to introduce a scientific Semi-Supervised Fuzzy C-Mean (SSFCM) clustering approach for passenger cars classification based on the feature learning technique. The proposed method is able classify vehicles in micro, small, middle, upper large and luxury classes. performance of algorithm analyzed compared with an unsupervised fuzzy C-means (FCM) Swiss expert dataset. Experiment results demonstrate that SSFCM has better correlation than traditional algorithm. These exhibit can reduce sensitivity FCM initial cluster centroids help labeled instances. Furthermore, improved by using resampling technique deal multi-class imbalanced problem eliminate irrelevant redundant features.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Features in Deep-Learning-Based Speech Recognition

Recent progress in deep learning has revolutionized speech recognition research, with Deep Neural Networks (DNNs) becoming the new state of the art for acoustic modeling. DNNs offer significantly lower speech recognition error rates compared to those provided by the previously used Gaussian Mixture Models (GMMs). Unfortunately, DNNs are data sensitive, and unseen data conditions can deteriorate...

متن کامل

Learning Deep Features for One-Class Classification

We propose a deep learning-based solution for the problem of feature learning in one-class classification. The proposed method operates on top of a Convolutional Neural Network (CNN) of choice and produces descriptive features while maintaining a low intra-class variance in the feature space for the given class. For this purpose two loss functions, compactness loss and descriptiveness loss are ...

متن کامل

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

Learning Robust Features using Deep Learning for Automatic Seizure Detection

We present and evaluate the capacity of a deep neural network to learn robust features from EEG to automatically detect seizures. This is a challenging problem because seizure manifestations on EEG are extremely variable both interand intra-patient. By simultaneously capturing spectral, temporal and spatial information our recurrent convolutional neural network learns a general spatially invari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3094366